miR‑142‑3p promotes osteoblast differentiation by modulating Wnt signaling.

نویسندگان

  • Weihua Hu
  • Yaping Ye
  • Weikai Zhang
  • Jiang Wang
  • Anmin Chen
  • Fengjing Guo
چکیده

Canonical Wnt signaling is critical for the control of osteoblast differentiation in human mesenchymal stem cells. MicroRNAs (miRs) are essential regulators of cell differentiation by post‑transcriptional regulation of target gene expression. The aim of the present study was to investigate the molecular mechanism by which miR‑142‑3p promotes osteoblastic differentiation using the human fetal osteoblastic 1.19 (hFOB1.19), real-time PCR and western blot analysis. Results showed an increased expression of miR‑142‑3p during osteoblast differentiation in the mesenchymal precursor cell line, hFOB1.19. In addition, the ectopic over-expression of miR‑142‑3p promoted hFOB1.19 differentiation, whereas the inhibition of miR‑142‑3p repressed differentiation. The expression of miR‑142‑3p was positively correlated with β‑catenin, an important protein in Wnt signaling. The adenomatous polyposis coli (APC) gene was a direct target of miR‑142‑3p, whereby miR‑142‑3p promoted Wnt signaling through inhibition of APC, leading to accumulation and nuclear translocation of β‑catenin. Therefore, miR‑142‑3p may be an essential mediator of osteoblast differentiation and a new therapeutic strategy for osteogenesis disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway

Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent wi...

متن کامل

miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation.

Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. M...

متن کامل

miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development.

The regulation of the balance between proliferation and differentiation in the mesenchymal compartment of the lung is largely uncharacterized, unlike its epithelial counterpart. In this study, we determined that miR-142-3p contributes to the proper proliferation of mesenchymal progenitors by controlling the level of WNT signaling. miR-142-3p can physically bind to adenomatous polyposis coli mRN...

متن کامل

MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression

Dickkopf-1 (DKK1) is a powerful antagonist of canonical WNT signaling pathway, and is regarded as a biomarker for osteoporosis. Its expression is highly correlated with bone mass and osteoblasts maturation. In this study, mouse primary bone marrow cells and osteoblast cell lines were used. Luciferase reporter assay and western blotting methods were employed to validate if miRNA-433-3p epigeneti...

متن کامل

miR-27a-3p targeting RXRα promotes colorectal cancer progression by activating Wnt/β-catenin pathway

This study aimed to elucidate how miR-27a-3p modulates the Wnt/β-catenin signaling pathway to promote colorectal cancer (CRC) progression. Our results showed that the expression of miR-27a-3p was up-regulated in CRC and closely associated with histological differentiation, clinical stage, distant metastasis and CRC patients' survival. miR-27a-3p mimic suppressed apoptosis and promoted prolifera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular medicine reports

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2013